Netgraph – a Tool for Searching in the Prague Dependency Treebank 2.0

Defence of the Doctoral Thesis, Prague, September 3rd, 2008

Author: Mgr. Jiří Mírovský

Charles University in Prague, Institute of Formal and Applied Linguistics

Supervisor: Prof. RNDr. Jan Hajič, Dr.

Charles University in Prague, Institute of Formal and Applied Linguistics

Opponents: RNDr. Roman Ondruška, Ph.D.

SUN Microsystems

Ing. Alexandr Rosen, Ph.D.

Charles University in Prague, Institute of Theoretical and Computational Linguistics

The Starting Point

Three sides existed whose connection needed to be solved:

The Prague Dependency Treebank
 Netgraph 1.0
 Users without programming skills

The Work

The doctoral thesis consists of these main parts:

- Analysis of the Requirements
- Designing the Query Language
 - Usage of the Query Language
 - Comparison to Other Search Systems
 - Implementation in Netgraph

The Work

In this presentation, I will focus on these parts:

Prague Dependency Treebank 2.0 Layers in PDT 2.0

Linguistic Requirements Valency

To study valency, the query language should be able to:

control a presence of a particular type of son
 control a non-presence of a son
 control number of sons

Linguistic Requirements Coordination etc.

Tree dependency is not always linguistic dependency. We need:

to skip a node (etc. coordination, apposition)

Linguistic Requirements Complex Example of Coordination

Czech: S čím mohou vlastníci i nájemci počítat, na co by se měli připravit? English (lit.): What can owners and tenants expect, what

they should get ready for?

Linguistic Requirements *Coordination etc.*

Tree dependency is not always linguistic dependency. We need:

to skip a node (etc. coordination, apposition)

even better: to set a linguistic dependency

Linguistic Requirements Predicative Complement

Czech: Ze světové recese vyšly jako jednička Spojené státy. English: The United States emerged from the world recession as number one.

Linguistic Requirements Predicative Complement

The dual dependency is represented by means of a reference to another node (attributes compl.rf and id). We need:

to match values unknown at the time of creating the query

Linguistic Requirements *...other phenomena*

Topic – Focus, Focus proper – combination of references, non-existence of a node and transitive closure of dependency; relation "<"

Rhematizers – closest left son, closest left brother

(Non-)projectivity – multiple-tree query to combine several one-tree queries representing different orientations of non-projective edges

Linguistic Requirementsother phenomena

Idioms etc. – searching in the linear form of the sentence (with regular expressions)

Agreement – reference to only a part of a value of an attribute of another node (e.g. the fifth position of the morphological tag for case)

Word order – measuring the horizontal distance between words

Linguistic Requirements Layers in PDT 2.0

Linguistic Requirements Accessing Lower Layers

Queries across the layers of annotation:

- A PATient expressed with a preposition k and a noun in the dative
- A PATient more dynamic than an ACTor but on the left side from it in the sentence

We need to have means of accessing the lower layers.

Linguistic Requirements Summary

Evaluation of a node

- multiple attributes evaluation
- alternative values
- alternative nodes (alternative evaluation of the whole set of attributes)
- wild cards (regular expressions)
- negation, relations other than "equal to"

Linguistic Requirements Summary

Dependencies between nodes (vertical relations)

- direct, transitive (existence, non-existence)
- vertical distance (from root, from one another)
- number of sons (zero for leaves)

Linguistic Requirements Summary

Horizontal relations

- precedence, immediate precedence
- negation of it
- horizontal distance

Secondary relations

• secondary dependencies, coreferences

Linguistic Requirements Summary

Other features

- multiple-tree queries
- accessing several layers of annotation at the same time
- searching in the linear form of the sentence

Netgraph Query Language The Basics

Netgraph Query Language

Main additions to the query language of Netgraph 1.0:

- Meta-attributes
- References to attributes of other nodes
- Multi-tree queries
- Hidden nodes for a multilayer access

Netgraph Query Language Meta-Attributes

Attributes not present in the corpus, treated like normal attributes:

- _transitive (transitive edge)
- _optional (optional node(s))
- _**#sons** (number of sons)
- _**#hsons** (number of hidden sons)
- _#descendants (number of nodes in the subtree)

Netgraph Query Language Meta-Attributes

- _**#Ibrothers** (number of left brothers)
- _**#rbrothers** (number of right brothers)
- _depth (distance from the root)
- **_#occurrences** (exact number of a particular type of sons/descendants)
- _name (label of a node for references)
- _sentence (linear form of the sentence)

Using the Query Language Valency

functor=ACT functor=PAT

at least one son (ACTor), no PATient

#occurrences=0

one ACTor, one PATient, no other sons

Using the Query Language Predicative Complement

• a nominal predicative COMPLement with second dependency on a PATient

Netgraph Query Language Hidden Nodes

Using the Query Language Hidden Nodes – A Query

 a PATient expressed with a preposition k and a noun ("N...3.*") in the dative ("N...3.*")

Using the Query Language Hidden Nodes – A Result Tree

Czech: Myslím, že ke Klausově vizi se budeme vracet. English: I think that we will get back to Klaus's vision.

Comparison to Other Tools

A detailed comparison to the query languages of the three following search tools has been done:

Netgraph As a Tool

Main extensions to the tool since version 1.0:

- Graphical creation of the query
 Chained queries
 Inverted matching
 Displaying context trees
 - Removing trees from the result

Usage of the Query Language

Analytical trees: October 2002 – March 2008 Tectogrammatical trees: February 2005 – March 2008

Number of:	Total	Analytical Trees	Tectogrammatical Trees
all queries	16 870	10 299	6 571
one-node queries	10 146	7 180	2 966
structured queries (more than one node)	6 724	3 119	3 605
queries without a meta-attribute	15 575	9 989	5 586
queries with a meta-attribute	1 295	310	985
queries with a reference	363	110	253
queries with a hidden node	1 194	-	1 194

Netgraph 1.93

× Netgraph 1.93 (10.4.2008)				
File View Options Tools Help				
global head: attributes: eparents_diff functor gram/aspect gram/degcmp gram/degcmp gram/deontmod gram/dispmod gram/ideftype gram/iterativeness gram/negation gram/number value: attree.rf value: set add x set add x	query tree: functor = PRED functor = ACT factory: new query [] add tree)[] subtree (]) father []\$ brother ,[] alternate node [] remove node name node: N1 undo show the query tree and/or: AND			
query:				
[functor=PRED]([functor=ACT])				
history:				
stop the query first only Invert match Select trees by the query above result Select trees by the query Select all trees Files Query Trees Debug Files set OK.				

Using the Query Language Hidden Nodes – A Query

 a PATient expressed with a preposition k and a noun ("N...3.*") in the dative ("N...3.*")

Using the Query Language Hidden Nodes – A Result Tree

Using the Query Language Hidden Nodes – A Query

an opposite dependency on the different layers

Using the Query Language Hidden Nodes – A Result Tree

 a PREDicate that does not govern an ACTor that governs a RSTR (a multi-tree query with relation AND)

Improvements to the Query Language Structured Negation – a Possible Future

unclear meaning of the second query

Improvements to the Query Language Changing the Meaning of the Dependency

 a new meta-attribute <u>dependence</u> might change the meaning of the dependency Improvements to the Query Language Changing the Meaning of the Dependency

 combinations of meta-attributes have to be carefully thought over