
Towards a Simple and Full-Featured Treebank Query Language

Jiří Mírovský
Charles University in Prague

Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

Malostranské nám. 25, 118 00 Prague 1, Czech Republic
mirovsky@ufal.mff.cuni.cz

Abstract

Netgraph query language is a query system
for linguistically annotated treebanks that
aims to be sufficiently powerful for linguis-
tic needs and yet simple enough for not re-
quiring any programming or mathematical
skill from its users. We provide an intro-
duction to the system along with a set of
examples how to search for some frequent
linguistic phenomena. We also offer a com-
parison to the querying power of TGrep – a
traditional and well known treebank query
system.

1 Introduction

Searching in a linguistically annotated treebank re-
quires a sophisticated tool, the more so the more
complex the annotation is. Many users require
(quite understandably) a simple and easy-to-learn
tool, and yet they expect it to be satisfactorily pow-
erful. It is obvious that there is a trade-off between
simplicity of a query language and its searching
power.

Netgraph has been designed to perform the
searching with maximum comfort and minimum
requirements on its users. Although it has been de-
veloped primarily for the Prague Dependency
Treebank 2.0 (Hajič et al. 2006), it can be used
with other treebanks too, both dependency and
constituent-structure types.

In this paper, we present Netgraph query lan-
guage and show how it can be used to search for
some frequent linguistic phenomena. Afterwards,
we try to compare the searching power of Netgraph

query system to the power of traditional TGrep
(Pito 1994), in order to check if it is at least the
same. Thus, we set a lower boundary to the power
of Netgraph query language. Therefore we concen-
trate on showing that TGrep does not outperform
Netgraph and only mention what TGrep's flaws
are, also because we know that there exist TGrep2,
TigerSearch and other more recent tools. But we
consider the power of TGrep the first step on the
way of Netgraph towards “a full-featured searching
tool”. We plan to offer a comparison with the more
recent tools in some future paper.

In section 1 (after this introduction) we very
briefly describe the Prague Dependency Treebank
2.0, just to make the examples in the subsequent
text more understandable. Anyone familiar with
this treebank may safely skip this subsection. In
the next subsection we also mention in a few
words the history of Netgraph and its properties as
a tool.

In section 2 we offer an introduction to the
query language of Netgraph along with the idea of
meta-attributes and what they are good for, and
present several linguistically motivated examples
of queries in the Prague Dependency Treebank.
We also list all available meta-attributes.

In section 3 we compare Netgraph query lan-
guage to TGrep by translating TGrep predicates to
Netgraph.

Finally, in section 4 we offer some concluding
remarks.

1.1 Prague Dependency Treebank 2.0

The Prague Dependency Treebank 2.0 (PDT 2.0,
see Hajič et al. 2006, Hajič 2004) is a manually an-
notated corpus of Czech. It is a sequel to the

Prague Dependency Treebank 1.0 (PDT 1.0, see
Hajič et al. 2001a, Hajič et al. 2001b).

The texts in PDT 2.0 are annotated on three lay-
ers - the morphological layer, the analytical layer
and the tectogrammatical layer. The corpus size is
almost 2 million tokens (115 thousand sentences),
although “only” 0.8 million tokens (49 thousand
sentences) are annotated on all three layers. By 'to-
kens' we mean word forms, including numbers and
punctuation marks.

On the morphological layer (Hana et al. 2005),
each token of every sentence is annotated with a
lemma (attribute m/lemma), keeping the base form
of the token, and a tag (attribute m/tag), keeping
its morphological information. Sentence bound-
aries are annotated here, too.

The analytical layer roughly corresponds to the
surface syntax of the sentence; the annotation is a
single-rooted dependency tree with labeled nodes
(Hajič et al. 1997, Hajič 1998). The nodes on the
analytical layer (except for technical roots of the
trees) also correspond 1:1 to the tokens of the sen-
tences. The order of the nodes from left to right
corresponds exactly to the surface order of tokens
in the sentence. Non-projective constructions (that
are quite frequent both in Czech (Hajičová et al.
2004) and in some other languages (see Havelka
2007)) are allowed. Analytical functions are kept at
nodes (attribute a/afun), but in fact they are
names of the dependency relations between a de-
pending node (son) and its governing node (father).

The tectogrammatical layer captures the linguis-
tic meaning of the sentence in its context. Again,
the annotation is a dependency tree with labeled
nodes. The correspondence of the nodes to the
lower layers is more complex here. It is often not
1:1, it can be both 1:N and N:1. It was shown in
detail in Mírovský (2006) how Netgraph deals with
this issue.

Many nodes found on the analytical layer disap-
pear on the tectogrammatical layer (such as func-
tional words, prepositions, subordinating conjunc-
tions, etc.). The information carried by these nodes
is stored in attributes of the remaining (autoseman-
tic) nodes and can be reconstructed. On the other
hand, some nodes representing for example obliga-
tory positions of verb frames, deleted on the sur-
face, are regenerated on this layer.

The tectogrammatical layer goes beyond the sur-
face structure of the sentence, replacing notions

such as Subject and Object by notions like Actor,
Patient, Addressee etc (see Hajičová 1998).

Attribute functor describes the dependency
between a depending node and its governor and
again is stored at the son-nodes. A tectogrammati-
cal lemma (attribute t_lemma) is assigned to ev-
ery node. Grammatemes are rendered as a set of 16
attributes grouped by the “prefix” gram (e.g.
gram/verbmod for verbal modality).

The total of 39 attributes are assigned to every
non-root node of the tectogrammatical tree, al-
though (based on the node type) only a certain sub-
set of the attributes is necessarily filled in.

Topic and focus (Hajičová et al. 1998) are
marked (attribute tfa), together with so-called
deep word order reflected by the order of nodes in
the annotation (attribute deepord). It is in gener-
al different from the surface word order, and all the
resulting trees are projective by the definition of
deep word order.

To be complete (as much as possible in this
short description), let us add that coreference rela-
tions between nodes of certain category types are
captured (Kučová et al. 2003), distinguishing also
the type of the relation (textual or grammatical).
Each node has an identifier (attribute id) that is
unique throughout the whole corpus. Attributes
coref_text.rf and coref_gram.rf con-
tain ids of coreferential nodes of the respective
types.

1.2 Netgraph as a Tool

The development of Netgraph started in 1998 as a
topic of Roman Ondruška's Master's Thesis (On-
druška 1998), and has been proceeding along with
the ongoing annotations of the Prague Dependency
Treebank 1.0 and later the Prague Dependency
Treebank 2.0. Now it is a fully functional tool for
complex searching in PDT 2.0.

Netgraph is a client-server application that al-
lows multiple users to search the treebank on-line
and simultaneously through the Internet. The serv-
er (written in C) searches the treebank, which is lo-
cated at the same computer or local network. The
client (written in Java2) serves as a very comfort-
able graphical user interface and can be located at
any node in the Internet. It sends user queries to
the server and receives results from it. Both the
server and the client also can, of course, reside at
the same computer. Authentication by the means of

login names and passwords is provided. Users can
have various access permissions.

A detailed description of the inner architecture
of Netgraph and of the communication between the
server and the client was given in Mírovský, On-
druška and Průša (2002).

2 Netgraph Query Language

In this section we give an introduction to the Net-
graph query language. We show on a series of ex-
amples how some frequent linguistic phenomena
can be searched for.

2.1 The Query Is a Tree

The query in Netgraph is a tree that forms a subtree
in the result trees. The treebank is searched tree by
tree and whenever the query is found as a subtree
of a tree (we say the query and the tree match), the
tree becomes part of the result. The result is dis-
played tree by tree on demand. The query can also
consist of several trees joined either by AND or OR
relation. In that case, all the query trees at the same
time (or at least one of the query trees, respective-
ly) are required to match the result tree.

The query has both a textual form and a graphi-
cal form. For lack of space, we will use its textual
form in this paper. However, each textual query
has its full graphical counterpart, which is always
much more transparent.

The syntax of the language is very simple. In the
textual form, square brackets enclose a node, at-
tributes (pairs name=value) are separated by a
comma, quotation marks enclose a regular expres-
sion in a value. Parentheses enclose a subtree of a
node, brothers are separated by a comma. In multi-
ple-tree queries, each tree is on a new line and the
first line contains only a single AND or OR. Alterna-
tive values of an attribute, as well as alternative
nodes, are separated by a vertical bar. It almost
completes the description of the syntax, only one
thing (references) will be added in the following
subsection.

The simplest possible query (and probably of lit-
tle interest on itself) is a simple node without any
evaluation: []. It matches all nodes of all trees in
the treebank, each tree as many times as how many
nodes there are in the tree. Nevertheless, we may
add conditions on its attributes, optionally using
regular expressions in values of the attributes. Thus

we may search e.g. for all nodes that are Subjects
and nouns but not in first case:
[afun=Sb, m/tag="N...[^1].*"].
We may notice here that regular expressions al-

low the first (very basic) type of negation in
queries.

More interesting queries usually consist of sev-
eral nodes, forming a tree structure. The following
example query searches for trees containing a
Predicate that directly governs a Subject and an
Object:
[afun=Pred]([afun=Sb],[afun=Obj]).
Please note that there is no condition in the

query on the order of the Subject and the Object,
nor on their left-right position to their father. It
does not prevent other nodes to be directly gov-
erned by the Predicate either.

2.2 Meta-Attributes

This simple query language, described briefly in
only a few examples, is quite useful but not power-
ful enough. There is no possibility to set a real
negation, no way of restricting the position of the
query in the result tree or the size of the result tree,
nor the order of nodes can be controlled. To allow
these and other things, meta-attributes have been
added to the query system.

Meta-attributes are not present in the corpus but
they pretend to be ordinary attributes and the user
uses them the same way like normal attributes.
Their names start with an underscore. There are
eleven meta-attributes, each adding some power to
the query language, enhancing its semantics, while
keeping the syntax of the language on the same
simple level. We present several of the meta-at-
tributes in this subsection, some others will be pre-
sented in the subsequent section, when they are
needed. A list of all meta-attributes is presented in
the next subsection.

Coordination is a frequent phenomenon in lan-
guages. In PDT (and in most other treebanks, too)
it is represented by a coordinating node. To be able
to skip (and effectively ignore) the coordination in
the queries, we have introduced the meta-attribute
_optional that marks an optional node. The
node then may but does not have to be in the result.
If we are interested, for example, in Predicates
governing Objects, we can get both cases (with co-
ordination and without it) in one query using this
meta-attribute:

[afun=Pred]([afun=Coord,_option-
al=1]([afun=Obj])).
The Coordination becomes optional. If there is a

node between the Predicate and its Object in the
result tree, it has to be the Coordination. But the
Object may also be a direct son of the Predicate,
omitting the optional Coordination.

There is a group of meta-attributes of rather
technical nature. They allow setting a position of
the query in the result tree, restricting the size of
the result tree or its part, and restricting number of
direct sons of a node. Meta attribute _depth con-
trols the distance of a node from the root (useful
when searching for a phenomenon in subordinated
clauses, for example), _#descendants controls
number of nodes in the subtree of a node (useful
e.g. when searching for „nice“ small examples of
something), _#sons controls number of (direct)
sons of a node.

Controlling number of direct sons (mainly in its
negative sense) is important for studying valency
of words (Hajičová and Panevová 1984). The fol-
lowing example searches on the tectogrammatical
layer of PDT. We want a Predicate that governs di-
rectly an Actor and a Patient and nothing else (di-
rectly):
[functor=PRED,_#sons=2]([func-
tor=ACT],[functor=PAT]).
If we replaced PAT with ADDR, we might

search for errors in the evaluation, since the theory
forbids Actor and Addressee being the only parts
of a valency frame.

So far, we could only restrict number of nodes.
But we often want to restrict a presence of a certain
type of node. We want to specify that there is not a
node of a certain quality. For example, we might
want to search (again on the tectogrammatical lay-
er) for an Effect without an Origo in a valency
frame. The meta-attribute that allows this real type
of negation is called _#occurrences. It controls
the exact number of occurrences of a certain type
of node, in our example of Origos:
[functor=PRED]([functor=EFF],[fu
nctor=ORIG, _#occurrences=0]).
It says that the Predicate has at least one son –

an Effect, and that the Predicate does not have an
Origo son.

There is still one important thing that we cannot
achieve with the meta-attributes presented so far.
We cannot set any relation (other than dependen-

cy) between nodes in the result trees (such as or-
der, agreement in case, coreference). All this can
be done using the meta-attribute _name and a sys-
tem of references. The meta-attribute _name sim-
ply names a node for a later reference from other
nodes.

Curly brackets enclose a reference to a value of
an attribute of the other node (with a given name)
in the result tree. This, along with the dot-referenc-
ing inside the reference and some arithmetic possi-
bilities, completes our description of the syntax of
the query language from subsection 2.1.

In the following example (back on the analytical
layer and knowing that attribute ord keeps the or-
der of the node (~ token) in the tree (~ sentence)),
we search for a Subject that is on the right side
from an Object:
[afun=Pred]([afun=Sb,ord>{N1.ord
}],[afun=Obj,_name=N1]).
We have named the Object node N1 and speci-

fied that ord of the Subject node should be bigger
than ord of the N1 node. If we used
ord>{N1.ord}+5, we would require them to be
at least five words apart.

2.3 List of All Meta-Attributes

To complete our description of Netgraph query
language, we present all available meta-attributes
in one list, along with a short description:
_transitive
This meta-attribute defines a transitive edge. It

has two possible values: true means that a node
may appear anywhere in the subtree of its query-
father, exclusive means, in addition, that the
transitive edge cannot share nodes in the result tree
with other exclusively transitive edges.
_optional
It defines an optional node. It may but does not

have to appear in the result. However, if there is a
node in the result at this particular place (father in
grandfather-father-son hierarchy), it must be the
one defined in the query. Depending on the value
of this meta-attribute, one or more nodes may be
skipped. A special value true skips an unlimited
chain of the specified nodes.
_#sons
It defines an exact number of sons of a query-

node in the result tree.

_#hsons
It defines an exact number of hidden sons of a

query-node in the result tree. Hidden nodes are es-
pecially marked nodes in the tree that provide con-
nection to the information on the lower layers of
annotation. They are useful when the relation be-
tween nodes at different layers is not 1:1. A de-
tailed description of the system of hidden nodes
was given in Mírovský (2006).
_#descendants
This meta-attribute defines an exact number of

all descendants of a node (number of nodes in its
subtree), excluding the node itself.
_#lbrothers
This meta-attribute defines an exact number of

left brothers of a node.
_#rbrothers
Similarly, it defines an exact number of right

brothers of a node.
_depth
It defines a distance between a node and a root

in the result tree.
_#occurrences
This meta-attribute specifies an exact number of

occurrences of a particular node at a particular
place in the result tree. It controls how many nodes
of the kind can occur in the result tree as sons of
the father of the node (including the node itself). It
can be combined with meta-attribute _transi-
tive for transitive meaning of the above defini-
tion.
_name
It names a node for references to values of its at-

tributes in the result tree.
_sentence
The value of this meta attribute is simply the

sentence the result tree belongs to in its linear
form. It can be used for linear searching in the sen-
tence (using regular expressions).

3 Comparison to TGrep

In this section, we compare the query language of
Netgraph to the query language of TGrep, in order
to show that the power of Netgraph query language
is at least the same as the power of TGrep. We also
show at the end that Netgraph has a greater power.

In subsection 3.1 we compare the ability of ex-
pressing an evaluation of a node. In the next two
subsections (3.2 and 3.3) we translate TGrep posi-
tive and negative predicates to Netgraph expres-
sions. In subsection 3.4 we give an example of
Netgraph expressions that cannot be searched for
in TGrep.

3.1 Node Evaluation

TGrep is a one-attribute searcher. Each node is
supposedly labeled only either by a non-terminal
symbol or a token. Netgraph, on the other hand,
can deal with multiple attributes and set conditions
on them separately and even form groups of them
that are labeled differently (so called “alternative
nodes”). Leaving this aside, we can say that Net-
graph has (at least) the same expressing power in
the sense of node values as TGrep does, as both
tools allow using regular expressions and set alter-
native values. Thus, we can almost simply repeat
the example of a search pattern from TGrep manu-
al:
in TGrep:
/^[Cc]hild.*$/|kid|youngster

in Netgraph:
"[Cc]hild.*"|kid|youngster

Netgraph regular expressions are automatically an-
chored and are enclosed in quotation marks. The
complete query in Netgraph in the text form would
then be (it also has to be “escaped” in the text
form, though not in the graphical form):
[token="\[Cc\]hild.*"|kid|young-
ster]
The wildcard represented by two underscores in

TGrep is reproducible in Netgraph by not specify-
ing any attribute at the node: [].

3.2 Tree Structure

The close similarity between Netgraph and TGrep
in expressing node evaluations disappears com-
pletely when it comes to defining relations be-
tween nodes. Here, these two tools have quite a
different approach. The main difference is that
TGrep uses predicates to express dependency be-
tween nodes, while Netgraph expresses dependen-
cy directly in the syntax of the query. In this sub-
section, we try to match TGrep positive predicates
with similar constructions in Netgraph. We take
predicates (relationships between nodes) from

TGrep manual one by one and translate them to
equivalent Netgraph expressions.

The first line of each example (starting with T)
always shows the expression in TGrep, while the
second line (starting with N and occasionally fol-
lowed by other lines) shows the equivalent expres-
sion in Netgraph.

A immediately dominates B:
T: A < B
N: [A]([B])

B is the X-th son of A:
T: A <X B
N: [A]([B,_#lbrothers=X-1])

We use meta-attribute _#lbrothers here, which
specifies how many left brothers a node has. X-th
to last son is similar, we only use meta-attribute
_#rbrothers (number of right brothers).

A dominates B (A is dominated by B similarly):
T: A << B
N: [A]([B,_transitive=true])
Meta-attribute _transitive defines the father edge

as transitive.

B is the leftmost (rightmost) descendant of A:
T: A <<, B
N:
[A]([B,_transitive=true,_name=N1],
[_transitive=true,ord<{N1.ord},
_#occurrences=0]).
B is a transitive descendant of A and there is no

transitive descendant of A that has smaller ord than
B. Rightmost descendant is similar
(ord<{N1.ord}).

A immediately precedes B:
T: A . B
N: AND
[A,_name=N1]
[B,ord={N1.ord+1}]
Since we generally do not know what dependen-

cy relation between the two nodes is, we must de-
fine them as two separate trees in a multiple-tree
query (another possibility is to use a wildcard and
two transitive sons). A precedes B is similar, we
only use a different expression in the second tree:
N: [B,ord>{N1.ord}]

A and B are brothers:
T: A $ B

N: []([A],[B])
We use the wild card here since we generally do

not know anything about the father (we only know
that there must be one).

A and B are brothers and A immediately pre-
cedes B:
T: A $. B
N: []([A,_name=N1][B,
#brothers={N1.#brothers}+1])

We have to use meta-attribute _#brothers
here instead of attribute ord, because there may be
other nodes (not brothers of A and B) in between
them in left-right order of nodes. On the other
hand, if we wanted to take the other nodes into ac-
count, we might use attribute ord.

Of course, things get more complex when we
start combining these expressions. We believe that
in Netgraph the complex expressions remain well
readable. Sometimes we may be lucky and have a
convenient meta-attribute at our disposal, just like
in the following example, taken again from TGrep
manual, which specifies all nodes A that dominate
either two or three sons:
T: A <2 __ !<4 __
N: [A,_#sons=2|3]

3.3 Negation

Netgraph's way of specifying relations between
nodes, especially their dependency, is primarily
positive and it has some difficulty expressing nega-
tive relations. For this reason, it is sometimes not
easy or even possible to match directly and exactly
TGrep negative expressions without “saying”
something positive about the nodes, too.

A does not immediately dominate B:
T: A !< B
N: [A]([B,_#occurrences=0]).

B is not the X-th son of A:
T: A !<X B
N: A([B,_#lbrothers!=X-1])
But note that it also means that B is a son of A.

Using meta-attribute _#occurrences again, we may
have another try on this example with a different
meaning:
N: [A]([B,_#lbrothers=X-1,_#occur
rences=0])

Here, B still may be a son of A, but not neces-
sarily, and in any case not the X-th one.

A does not dominate B:
T: A !<< B
N: [A]([B,_transitive=true,_#occur
rences=0])

B is not the leftmost descendant of A:
T: A !<<,B
This again must be considered in two separate

cases: positive and negative. If we only want to say
that the leftmost descendant of A has another prop-
erty than B, the query in Netgraph would be:
N: [A]([!B,_transitive=true,
_name=N1],[_transitive=true,
ord<{N1.ord},_#occurrences=0]).
On the other hand, if we want to say that B is a

descendant of A that is not the leftmost one, the
query would be:
N: [A]([B,_transitive=true,
name=N1],[ord<{N1.ord},#occur-
rences>=1,_transitive=true])

A does not immediately precede B:
T: A !. B
N: AND
[A,_name=N1]
[!B,ord={N1.ord+1}]
Which is very similar to the positive case from

the previous subsection. Note that it also means
that there is a directly subsequent node !B in the
result tree (a node that does not have B-property).

A does not precede B:
T: A !.. B
Just like before, two possible interpretations of

this expression lead to two different realizations in
Netgraph. The positive meaning is quite simple –
A does not precede B is equal to B precedes A
(since nodes cannot have the same left-right order).
The negative meaning (there is A that is not fol-
lowed by B) would be translated:
AND
[A,_name=N1]
[B,ord>{N1.ord},_#occurrences=0]

A is not a brother of B:
T: A !$ B
N: []([A],[B,_#occurrences=0])

If we also wanted to use B positively in the
query, we might add another tree of a multiple-tree
query.

It is not true that A $. B (similarly A !$.. B)
T: A !$. B
Many possible interpretations of this expression

lead to many different realizations of the equiva-
lent Netgraph query. We will not show all of them
(they are all similar to the previous queries) but
only choose the most direct one, B is a brother of
A but does not immediately follow A:
N: []([A,_name=N1],
[B,_#lbrothers!={N1._#lbrothers}+1
])

3.4 The Other Way

Since TGrep always searches for one pattern only,
it cannot reproduce multiple-tree queries from Net-
graph, combined with expression OR. Meta-at-
tribute _optional also represents a type of OR-
expression on the tree structure and even the sim-
ple example given in subsection 2.2 cannot be re-
produced in TGrep:
[afun=Pred]([afun=Coord,_option-
al=1]([afun=Obj])).

4 Conclusion

We have presented Netgraph query language on a
set of linguistically motivated examples. We have
compared Netgraph query power to the power of
TGrep query language in order to show that it is
not lesser, by translating all TGrep predicates to
expressions in Netgraph. We have also shown that
some Netgraph expressions cannot be translated to
TGrep.

Many constructions in Netgraph seem more
complicated than respective expressions in TGrep.
The reason is that we matched TGrep predicates. It
is clear that any other system that uses a different
set of predicates cannot be as straightforward as
TGrep in mimicking these predicates. It is suffi-
cient for our purpose that the translation is possi-
ble.

We can conclude that Netgraph query language
is at least as strong as TGrep query language. The
impossibility of translating OR-expressions from
Netgraph to TGrep shows that Netgraph query lan-
guage is stronger than TGrep query language.

Acknowledgment

The research reported in this paper was supported
by the Grant Agency of the Academy of Sciences
of the Czech Republic, project IS-REST (No.
1ET101120413).

References
Hajič J. et al. 2006. Prague Dependency Treebank 2.0.

CD-ROM LDC2006T01, LDC, Philadelphia, 2006.

Pito R. 1994. TGrep Manual Page. Available from
http://www.ldc.upenn.edu/ldc/online/treebank/

Hajič J. 2004. Complex Corpus Annotation: The Prague
Dependency Treebank. Jazykovedný ústav Ĺ. Štúra,
SAV, Bratislava, 2004.

Hajič J., Vidová-Hladká B., Panevová J., Hajičová E.,
Sgall P., Pajas P. 2001a. Prague Dependency Tree-
bank 1.0 (Final Production Label). CD-ROM LD-
C2001T10, LDC, Philadelphia, 2001.

Hajič J., Pajas P. and Vidová-Hladká B. 2001b. The
Prague Dependency Treebank: Annotation Structure
and Support. In IRCS Workshop on Linguistic
databases, 2001, pp. 105-114.

Hana J., Zeman D., Hajič J., Hanová H., Hladká B.,
Jeřábek E. 2005. Manual for Morphological Annota-
tion, Revision for PDT 2.0. ÚFAL Technical Report
TR-2005-27, Charles University in Prague, 2005.

Hajič J. et al. 1997. A Manual for Analytic Layer Tag-
ging of the Prague Dependency Treebank. ÚFAL
Technical Report TR-1997-03, Charles University in
Prague, 1997.

Hajič J. 1998. Building a Syntactically Annotated Cor-
pus: The Prague Dependency Treebank. In Issues of
Valency and Meaning, Karolinum, Praha 1998, pp.
106-132.

Hajičová E., Havelka J., Sgall P., Veselá K., Zeman D.
2004. Issues of Projectivity in the Prague Dependen-
cy Treebank. MFF UK, Prague, 81, 2004.

Havelka J. 2007. Beyond Projectivity: Multilingual
Evaluation of Constraints and Measures on Non-Pro-
jective Structures. In Proceedings of ACL 2007,
Prague, pp. 608-615.

Hajičová E, Panevová J. 1984. Valency (case) frames.
In P. Sgall (ed.): Contributions to Functional Syntax,
Semantics and Language Comprehension, Prague,
Academia, 1984, pp. 147-188.

Mírovský J. 2006. Netgraph: a Tool for Searching in
Prague Dependency Treebank 2.0. In Proceedings of
TLT 2006, Prague, pp. 211-222.

Hajičová E. 1998. Prague Dependency Treebank: From
analytic to tectogrammatical annotations. In: Pro-
ceedings of 2nd TST, Brno, Springer-Verlag Berlin
Heidelberg New York, 1998, pp. 45-50.

Hajičová E., Partee B., Sgall P. 1998. Topic-Focus Ar-
ticulation, Tripartite Structures and Semantic Con-
tent. Dordrecht, Amsterdam, Kluwer Academic Pub-
lishers, 1998.

Kučová L., Kolářová-Řezníčková V., Žabokrtský Z.,
Pajas P., Čulo O. 2003. Anotování koreference v
Pražském závislostním korpusu. ÚFAL Technical
Report TR-2003-19, Charles University in Prague,
2003.

Ondruška R. 1998. Tools for Searching in Syntactically
Annotated Corpora. Master Thesis, Charles Univer-
sity in Prague, 1998.

Mírovský J., Ondruška R., Průša D. 2002. Searching
through Prague Dependency Treebank - Conception
and Architecture. In Proceedings of The First Work-
shop on Treebanks and Linguistic Theories, Sozopol,
2002, pp. 114--122.

