
 LEARNING TO USE THE PRAGUE ARABIC DEPENDENCY TREEBANK 1

LEARNING TO USE THE
PRAGUE ARABIC DEPENDENCY TREEBANK

Otakar Smrž, Petr Pajas, Zdeněk Žabokrtský,
Jan Hajič, Jiří Mírovský, Petr Němec

Charles University in Prague,
Institute of Formal and Applied Linguistics

1. Introduction
Prague Arabic Dependency Treebank (PADT), recently published in its
first version (Hajič et al. 2004a) by the Linguistic Data Consortium, is
both a collection of multi-level linguistic annotations over Modern
Standard Arabic, and a suite of unique software implementations
designed for general use in Natural Language Processing.

The underlying theory of this resource is overviewed in (Hajič et al.
2004b). In the current paper, we focus rather on the practical aspects of
using the PADT data and the computational tools in original research.

1.1 Data survey
The corpus of PADT 1.0 consists of morphologically and analytically
annotated newswire texts of Modern Standard Arabic, which originate
from Arabic Gigaword (Graff 2003) and partly overlap with the plain
data of Penn Arabic Treebank, Part 1 (Maamouri et al. 2003) and Penn
Arabic Treebank, Part 2 (Maamouri et al. 2004).

The rough survey of the annotations is given in Table 1. Data sets
AFP, UMH and XIN come from the earlier period of the project when
morphological annotations were not based on the MorphoTrees
technology (cf. Subsection 2.1). Therefore, the files recording the
process of morphological disambiguation of these data could not be

2 OTAKAR SMRŽ ET AL.

distributed. Still, the resulting morphological information is available in
the analytical files, along with the analytical annotations.

The other data sets, namely ALH, ANN and XIA, are full-fledged
already and provide files of three different types — non-annotated text,
MorphoTrees annotations, and analytical annotations. Information from
the morphological level is also, as a prerequisite, propagated into the
analytical level. Not all the data are processed on both levels, though.

Data [A] Tokens [M] Original Data Provider News Period
AFP 13 000 — Agence France Presse 2000 / VII
UMH 38 500 — Ummah Press Service 2002 / I–III
XIN 13 500 — Xinhua News Agency 2003 / V
ALH 10 000 73 500 Al-Hayat News Agency 2001 / IX
ANN 12 500 25 500 An-Nahar News Agency 2002 / XI
XIA 26 500 49 500 Xinhua News Agency 2003 / V
113 500 Analytical level
148 000 MorphoTrees

TrEd Netgraph Oraculum Encode::Arabic
software + documentation

Table 1: Survey of the contents of the Prague Arabic Dependency
Treebank 1.0. Columns [A] and [M] represent the number of syntactic
units, i.e. tokens, for analytical level and MorphoTrees, respectively.

1.2 Annotation environment
The indispensable annotation environment for this and various other
treebanking projects is the TrEd tree editor (Hajič et al. 2001) written in
Perl/Tk. It is not only a fully programmable and customizable graphical
user interface, but also an excellent suite of utilities for automated,
optionally parallel, processing of the data (consistency checks and
revising, batch conversions, search, difference evaluation, etc.).

TrEd is documented on http://ckl.mff.cuni.cz/pajas/tred/. We will
explore some of its features in Subsection 4.2.

1.3 Treebank search engines
Netgraph (Mírovský & Ondruška 2002) is a client–server application
for efficient searching in treebanks. Unlike TrEd, it provides the user
with an easy-to-learn graphical query language that does not presume

 LEARNING TO USE THE PRAGUE ARABIC DEPENDENCY TREEBANK 3

any programming skills. The client application is implemented in Java,
and is available on http://quest.ms.mff.cuni.cz/netgraph/.

Oraculum (Ljubopytnov et al. 2002) supports linguistically even
more expressive queries, and operates through a sophisticated web
browser interface, which is now being ported to Arabic.

1.4 Other tools
Next to several other linguistically significant solutions (cf. Section 5),
there is the Encode::Arabic module (Smrž 2003) for Perl that supports
miscellaneous modes of processing of the non-trivial, yet ingenious
ArabTeX encoding notation of the Arabic script and/or its phonetic
transcription (Lagally 2004). Encode::Arabic covers the Buckwalter
transliteration, too.

2. Data Structures
The PADT annotations are distributed as UTF-8 encoded files in the FS
format, which is documented on TrEd’s website. TrEd and the array of
associated tools and libraries provide options for converting these data
into several XML-compliant formats, and vice versa. TrEd’s graphical
renderings can be printed as PostScript, PDF, or image files.
 If independent data processing is desired, the files can best be
accessed using the Fslib module for Perl, which is available in the
distribution along with many other modules and scripts serving for data
flow management, migration of annotations, updating and quality
checking, difference evaluation or execution of systematic revisions.
 The non-annotated textual data are provided in the original XML
format of the Arabic Gigaword corpus.

2.1 Functional morphology & MorphoTrees
The morphological annotations of PADT used to directly employ the
information produced by Buckwalter Arabic Morphological Analyzer
(Buckwalter 2002). With the introduction of Functional Arabic
Morphology (Smrž in prep.), all morphological tags were mapped as
closely as possible into the current positional notation representing
individual grammatical categories in separate columns.

The new type of annotations required a different disambiguation
tool, and MorphoTrees (Smrž & Pajas 2004) came into existence,
implemented as an annotation context for TrEd.

4 OTAKAR SMRŽ ET AL.

Figure 1 (top / left):
The hierarchy of MorphoTrees and
their annotation using restrictions
(cf. Smrž & Pajas 2004).

Figure 2 (bottom / right):
View of annotated paragraph. Note
the levels of distinct information.

 LEARNING TO USE THE PRAGUE ARABIC DEPENDENCY TREEBANK 5

MorphoTrees is the idea of building effective and intuitive
hierarchies over and among the input and output strings of
morphological systems. It is especially interesting for Arabic and the
functional morphology, but is in no sense limited to either of these.

Figure 1 illustrates how MorphoTrees organize the morphological
information/analyses into a multi-level hierarchy. The leaves of these
trees are the imaginable tokens with their tags as the atomic units, and
the root is the input string being analyzed, or generally an entity (some
tree of discourse elements).

Rising from the leaves up, there is the level of lemmas of the
lexical units, the level of non-vocalized standard orthographic forms,
and the level of decomposition of the entity into a sequence of such
forms, implying the number of tokens and their spelling.

As a convenient extension, the overall solutions of the annotations
can also be viewed in a similar hierarchical structure. An example of
such a paragraph tree is given in Figure 2.

2.2 Analytical dependency trees
Analytical annotations represent the surface syntax of the language in
the dependency formalism outlined in (Hajič et al. 2004b). They
provide a link from morphology to tectogrammatics — the level of
linguistic meaning — of the Functional Generative Description theory
(cf. Sgall et al. 2004).
 Analytical level is modeled with dependency trees whose nodes
map, one to one, to the tokens resulting from the morphological
analysis and tokenization, and whose roots group the nodes according
to the division of the discourse into sentences or paragraphs.

Edges in the trees establish/reconstruct syntactic relations between
the governor and the dependent, or rather, the whole subtree under and
including the dependent. The nature of the government is expressed by
the analytical functions of the nodes being linked.

In addition to this strict dependency structure, information of other
kinds and character can be captured in the trees, while computational
procedures for inferring any complementary information can be
implemented independently of data. In TrEd, resolution of grammatical
correference is automated in this manner. Identifying resumptive
pronouns and deverbal inner objects by themselves is enough for some
algorithm to find their grammatical counterparts and render these pairs.

6 OTAKAR SMRŽ ET AL.

Figure 3 (very right):
Analytical tree featuring advanced
phenomena like ellipsis of another
predicate, deverbal inner objects in
adverbial function, or composite
auxiliary elements. Note the labels
[ExD] (on otherwise coordinative
expression), [Adv_Msd], [AuxY] /
[AuxP] (compound preposition) or
[AuxY] / [ExD], respectively.

Figure 4 (above left):
Analytical representation of the sentence of Figure 2, with displayed
morphological tags. Note the topology and functions of the predicate
and its participants (subject, direct and indirect objects), and consider
differences among the distinct attributive modifications.

 LEARNING TO USE THE PRAGUE ARABIC DEPENDENCY TREEBANK 7

In Figure 3, the instances of such non-dependency relations are
shown with dashed arcs. Nonetheless, one might begin with Figure 4
for a more elementary example of an analytical tree.

3. Installation and General Setup
PADT 1.0 is distributed by Linguistic Data Consortium, University of
Pennsylvania, http://www.ldc.upenn.edu/. The PADT project has its
own website, http://ckl.mff.cuni.cz/padt/, where the data and the tools
are documented in detail, and from where updates and extensions to the
distribution are available.

User’s installation should start with TrEd / Perl, and might proceed
with downloading the Netgraph client / Java. The software applications
are platform independent, and there is only little difficulty involved in
setting things up. Installation of the data management scripts and
modules or the CVS repositories for the FS annotation files is optional.
 In order to search PADT with Netgraph, the client application must
connect to a server accessing the data. Users are welcome to register
with our Netgraph server, even though servers can also be run locally.

4. The Quest for IMPROPER ANNEXATION
Let us face the annotated data. Typically, linguists would like to search
for a particular phenomenon in the language, evaluate it, contrast it
with some other phenomena, consider the contexts of usage, etc.
 The example case that we will explore in this section is the
IMPROPER ANNEXATION in Arabic. A condensed definition of this
phenomenon might not be precise — and we will not attempt it.
Instead, we will pronounce and eventually refine our intuition that
improper annexation is a genitive construction whose first term is an
adjective, and whose second term is a [definite] noun (cf. for instance
Schulz 2004:131–133,140,149).

We will, of course, use the treebank in order to test and improve the
description of this notion. More importantly, we will learn about the
applicability of PADT and its tools, and about some limitations.

4.1 Querying PADT with Netgraph
A query in Netgraph is a generalized subtree having the properties of
the desired treebank structures specified as attributes of its individual
nodes or edges. Queries can be created interactively through a graphical

8 OTAKAR SMRŽ ET AL.

interface, or equivalently, they can be linearized in a bracketing-style
notation, which we will use here.

[tag=A?????????]
(
 [tag=N?????????, afun=Atr])

Figure 5: Netgraph query for the analytical level — a simple relation.

 The example query in Figure 5 will return all occurrences of
adjectives that have an attributive noun as one of its children. Such a
relation is weaker than what improper annexation qualifies like. In
particular, it ignores any constraints on word order, mutual distance,
grammatical case and definiteness that we expect from a genitive
construction. Anyway, it is just fine to ask Netgraph again and more
specifically, adding some attributes to the nodes and listing the
acceptable combinations of morphological categories in the tags. This
gradual ruling out of irrelevant solutions is a helpful practice.
 Netgraph queries need not concern the analytical level only. The
structures in MorphoTrees can be investigated as well. Consider the
query of Figure 6, which says: look for the paragraph trees, i.e. those
whose root (_depth=0) is of type ‘paragraph’, in which we are
interested in two immediately succeeding token nodes on the lowest
level (_depth=3) such that the first one is a non-indefinite adjective and
the second one is a non-indefinite noun either certainly in genitive, or
with the value for case unset. Recall Figure 2 for better visualization.

[type=paragraph, _depth=0]
(
 [_transitive=true, _depth=3,
 _name=N1,
 type=token_node,
 tag=A????????C|A????????D|A????????R|A????????-]
 ,
 [_transitive=true, _depth=3,
 ord={N1.ord}+3,
 type=token_node,
 tag=N???????2C|N???????2D|N???????2R|N???????2-|
 N???????-C|N???????-D|N???????-R|N???????--])

Figure 6: Netgraph query for improper annexation in MorphoTrees.

 LEARNING TO USE THE PRAGUE ARABIC DEPENDENCY TREEBANK 9

 Upon submitting this query to the server, we receive much more
precise tips of what improper annexation could be. But when browsing
through the results in Netgraph and trying to determine which of these
are and which are not the appropriate cases, one may usually not see
enough context of the surrounding paragraphs, and may not export the
information in a very flexible way in order to process it further. Neither
may the data be edited directly, if one is supposed to make corrections
based on the search. How do we meet such requirements, then?

4.2 Searching and viewing in TrEd
TrEd, even in its graphical annotation mode, can work with filelists, by
which we define the extent of the corpus where search operations are to
take place. Besides the obligatory menu item ‘Node > Find ...’ by its
attributes, there is the function ‘User-defined > Perl-Eval’ that executes
a given Perl code in the current environment of TrEd’s data structures.

ChangingFile(0); ## $this represents the current node

do {

 if ($this-> root()->{' type'} eq ' paragraph') {

 $prev = undef;

 while ($this = $this->following()) {

 if ($this->{' type'} eq ' token_node') {

 if (defined $prev
 and $prev->{' tag'} =~ /^ A........[CDR-]$/
 and $this->{' tag'} =~ /^ N.......[2-][CDR-]$/
 and $this->{' ord'} == $prev->{' ord'} + 3) {

 return;
 }

 $prev = $this;
 }
 }
 }
}
while NextTree() || NextFile();

Figure 7: TrEd evaluation code in Perl, equal to the query of Figure 6.

10 OTAKAR SMRŽ ET AL.

 The program in Figure 7 keeps iterating over the MorphoTrees data
until the configuration of nodes discussed with Figure 6 is encountered.
Then, the control returns to TrEd, which sets the cursor to the newly
found occurrence of the hypothesized improper annexation.
 The program in Figure 8 is designed for the analytical level, where
the dependency information, rather than immediate adjacency, can be
exploited. The algorithm carefully finds the head of the genitive
construction even if its tail actually consists of multiple genitives in
(hierarchical) coordination or apposition (cf. Figure 9, ex. E). Plus,
there are constraints on the morphological tags of the nodes in question,
relaxed a little with respect to the tagset of the former disambiguation.

ChangingFile(0); ## $this represents the current node

do {

 while ($this = $this->following()) {

 if ($this->{' afun'} eq ' Atr' and
 $this->{' tag'} =~ /^ N.......[23-][CDRX-]$/) {

 $head = $this;

 $head = $head->parent()
 while $head->{'parallel'} =~ /^(?:Co| Ap)$/;

 $head = $head->parent();

 return if $head->{' tag'} =~ /^ A........[CDRX-]$/;
 }
 }
}
while NextTree() || NextFile();

Figure 8: TrEd evaluation code for finding improper annexation on the
analytical level. Note how coordination/apposition nodes between the
two parts of the genitive construction are treated. Values 3 and X in
the tags reflect some systematic ambiguity present in the old data sets.

 It might be clear by now that this powerful mechanism of
computing with trees can be abstracted from, and that the return
instruction can be replaced with, say, printing out the current node’s
address and some significant attributes of its neighbors, or with code

 LEARNING TO USE THE PRAGUE ARABIC DEPENDENCY TREEBANK 11

for complex restructuring, or with simple counting. In fact, there are
two important modifications of TrEd, named btred and ntred , with
which almost every automatic processing, including searching, is done
very quickly and conveniently. Please, consult the documentation.

4.3 Improper annexation
Having applied the criteria of Figure 7 and Figure 8 on our treebank
data, we certainly did not obtain only improper annexations! How can
we tell? And why have we not come up with the right kind of queries?
 Let us refer for the answer to the first question to e.g. (Schulz 2004)
or (Badawi et al. 2004). There are crucial semantic distinctions to make
as to whether the adjectival head of the genitive construction logically
qualifies the dependent noun, or whether this relation is reversed. Such
information is neither present in morphology, nor in analytical syntax.

Figure 9: Contrasting improper annexation (examples A–F) with nact
sababī (examples O–R). Note the patterns of definiteness or agreement
in both of these phenomena (cf. e.g. Badawi et al. 2004:110–116).

12 OTAKAR SMRŽ ET AL.

On the other hand, our queries do include some looseness. Ideally,
the values of the relevant morphological categories should all be set.
Then, the definiteness values for the head of a genitive construction
could only be R (reduced) or C (complex), as we exemplify in (Hajič et
al. 2004b), and there would emerge other regularities that we could try
to capture, or patterns that we could try to exclude.

In Figure 9, we give several examples of true improper annexation
that we have found, and compare it with another phenomenon that
partly invades the set of search results due to the unset case information
of the nominatives therein.

Needless to say, preferring the recall of a query to its precision
helps discover more inconsistencies or mistakes in annotation. The way
we process the results in order to filter out false positives, like printing
additional information, sorting and uniq-ing it, etc., is also important.
In our current situation, roughly one out of six tips provided by the
queries happened to be correctly classified as improper annexation.

Figure 10 summarizes the most interesting of these as observed in
PADT — in its development version growing in size. Some of the
phrases are rather idiomatic (cf. Wehr 1980), but what we notice is the
actual freedom of expression and productivity of this linguistic
construct. In the list, the heads of the annexations are lexicographically
normalized, and the numbers in the rightmost column indicate the
counts of occurrences within the treebank.

5. Applications and Prospects
The applicability of treebanks is very diverse. Not only, as we have just
illustrated, can the annotated structures be studied in the educational or
purely linguistic framework. The other prominent motivation is to use
the data for machine-learning purposes, possibly aspiring to machine
translation (cf. Čmejrek et al. 2004) or modeling of meaning.
 In the course of the PADT project, we have developed systems for
automatic morphological and analytical disambiguation, a.k.a. tagging
and parsing (cf. Hajič et al. 2004b). This technology is going to be
employed in the processing of the Arabic English Parallel News Part 1
(Ma 2004). Alternative automated annotation methods also come into
question, like the parallel-corpus-based syntactic projection (Hwa et al.
2005) or the conversion of constituency annotations into dependencies
(Žabokrtský & Smrž 2003; cf. Habash & Rambow 2004).

 LEARNING TO USE THE PRAGUE ARABIC DEPENDENCY TREEBANK 13

Keep as portrait!
Figure 10: Selected occurrences of improper annexation

found on either level of the treebank.
Keep as portrait!

F
ig

u
re

 1
0

: S
el

ec
te

d
 o

cc
u

rr
en

ce
s

o
f i

m
p

ro
p

er
 a

n
n

ex
at

io
n

 fo
u

n
d

 o
n

 e
ith

er
 le

ve
l o

f t
h

e
tr

ee
b

an
k.

14 OTAKAR SMRŽ ET AL.

 We would as well like to implement algorithms for detection of
inconsistencies and errors in the annotations (cf. Dickinson & Meurers
2003). The PADT website will offer any eventual updates. The current
distribution already includes scripts for safe and maximally efficient
migration of annotations if some data need to be synchronized and the
changes propagated across the levels of description.

6. Conclusion
We have tried to give a practical introduction to the Prague Arabic
Dependency Treebank project, with emphasis on PADT 1.0 available to
researchers worldwide.
 Having described the essential data structures in the treebank, we
chose to search for and explore a particular linguistic phenomenon. We
demonstrated the methodology for posing queries, and outlined how the
information in the treebank might be processed in the general case.
 We have presented and discussed the most noteworthy instances of
improper annexation in Arabic that we found in the treebank using this
methodology. This is a significant result by itself, and would be
extremely hard to achieve without the kind of annotations the treebank
provides. We would like to invite others to try their own queries.

Treebanking entails many challenging tasks, and we continue to
approach them, as well as to improve the existing solutions.

7. Acknowledgements
The research described herein was supported by the Ministry of
Education of the Czech Republic through projects LN00A063 and
MSM113200006, and continues with the support from the Grant
Agency of Charles University in Prague, project 207-10/203333. At the
time of writing this paper, one of the authors was a grantee of the
Fulbright-Masaryk Fellowship awarded by the Fulbright Commission
in the Czech Republic.
 The ‘quest for improper annexation’ was first suggested by Tim
Buckwalter, while Iveta Kouřilová helped us with understanding and
presenting the topic. We would like to thank them very much, too.

 LEARNING TO USE THE PRAGUE ARABIC DEPENDENCY TREEBANK 15

REFERENCES
Badawi, Elsaid & Carter, Mike G. & Gully, Adrian. 2004. Modern Written Arabic:

A Comprehensive Grammar. Routledge, London.
Buckwalter, Tim. 2002. Buckwalter Arabic Morphological Analyzer Version 1.0.

LDC catalog number LDC2002L49, ISBN 1-58563-257-0. Linguistic Data
Consortium, University of Pennsylvania.

Čmejrek, Martin & Cuřín, Jan & Havelka, Jiří. 2004. “Prague Czech-English
Dependency Treebank: Any Hopes for a Common Annotation Scheme?”.
HLT-NAACL 2004 Workshop: Frontiers in Corpus Annotation, 47–54. Boston.

Dickinson, Markus & Meurers, W. Detmar. 2003. “Detecting Inconsistencies in
Treebanks”. Proceedings of the Second Workshop on Treebanks and Linguistic
Theories (TLT 2003). Växjö.

Graff, David. 2003. Arabic Gigaword. LDC catalog number LDC2003T12, ISBN
1-58563-271-6. Linguistic Data Consortium, University of Pennsylvania.

Habash, Nizar & Rambow, Owen. 2004. “Extracting a Tree Adjoining Grammar
from the Penn Arabic Treebank”. Proceedings of Traitement Automatique du
Langage Naturel (TALN-04). Fez.

Hajič, Jan & Hladká, Barbora & Pajas, Petr. 2001. “The Prague Dependency
Treebank: Annotation Structure and Support”. Proceedings of the IRCS
Workshop on Linguistic Databases, 105–114. University of Pennsylvania.

Hajič, Jan & Smrž, Otakar & Zemánek, Petr & Pajas, Petr & Šnaidauf, Jan &
Beška, Emanuel & Kráčmar, Jakub & Hassanová, Kamila. 2004a. Prague
Arabic Dependency Treebank 1.0. LDC catalog number LDC2004T23, ISBN
1-58563-319-4. Linguistic Data Consortium, University of Pennsylvania.

Hajič, Jan & Smrž, Otakar & Zemánek, Petr & Šnaidauf, Jan & Beška, Emanuel.
2004b. “Prague Arabic Dependency Treebank: Development in Data and
Tools”. Proceedings of the NEMLAR International Conference on Arabic
Language Resources and Tools, 110–117. Cairo.

Hwa, Rebecca & Resnik, Philip & Weinberg, Amy & Cabezas, Clara & Kolak,
Okan. 2005. “Bootstrapping Parsers via Syntactic Projection across Parallel
Texts”. Natural Language Engineering, June 2005.

Lagally, Klaus. 2004. ArabTeX: Typesetting Arabic and Hebrew. User Manual
Version 4.00, Fakultät Informatik, Universität Stuttgart.

Ljubopytnov, Vladimír & Němec, Petr & Pilátová, Michaela & Reschke, Jakub &
Stuchl, Jan. 2002. “Oraculum, a System for Complex Linguistic Queries”.
SOFSEM 2002 Student Research Forum, 27–34.

16 OTAKAR SMRŽ ET AL.

Ma, Xiaoyi. 2004. Arabic English Parallel News Part 1. LDC catalog number
LDC2004T18, ISBN 1-58563-310-0. Linguistic Data Consortium, University
of Pennsylvania.

Maamouri, Mohamed & Bies, Ann & Jin, Hubert & Buckwalter, Tim. 2003. Arabic
Treebank: Part 1 v 2.0. LDC catalog number LDC2003T06, ISBN 1-58563-
261-9. Linguistic Data Consortium, University of Pennsylvania.

Maamouri, Mohamed & Bies, Ann & Buckwalter, Tim & Jin, Hubert. 2004. Arabic
Treebank: Part 2 v 2.0. LDC catalog number LDC2004T02, ISBN 1-58563-
282-1. Linguistic Data Consortium, University of Pennsylvania.

Mírovský, Jiří & Ondruška, Roman. 2002. “Netgraph System: Searching through
the Prague Dependency Treebank”. Prague Bulletin of Mathematical
Linguistics, (77):101–104.

Schulz, Eckehard. 2004. A Student Grammar of Modern Standard Arabic.
Cambridge University Press.

Sgall, Petr & Panevová, Jarmila & Hajičová, Eva. 2004. “Deep Syntactic
Annotation: Tectogrammatical Representation and Beyond”. HLT-NAACL
2004 Workshop: Frontiers in Corpus Annotation, 32–38. Boston.

Smrž, Otakar. In prep. Functional Arabic Morphology. Formal System and
Implementation. Ph.D. thesis, Charles University in Prague.

Smrž, Otakar. 2003. Encode::Arabic. Programming module. Comprehensive Perl
Archive Network, http://search.cpan.org/dist/Encode-Arabic/.

Smrž, Otakar & Pajas, Petr. 2004. “MorphoTrees of Arabic and Their Annotation
in the TrEd Environment”. Proceedings of the NEMLAR International
Conference on Arabic Language Resources and Tools, 38–41. Cairo.

Wehr, Hans. 1980. A Dictionary of Modern Written Arabic. Arabic–English.
Spoken Language Service, New York.

Žabokrtský, Zdeněk & Smrž, Otakar. 2003. “Arabic Syntactic Trees: from
Constituency to Dependency”. EACL 2003 Conference Companion, 183–186.
Budapest.

